NASA’s Perseverance ‘Percy’ Rover Lands On Mars To Begin Hunt For Signs Of Ancient Life

The car-sized Perseverance, the most advanced robot ever sent to the Red Planet, aced its “seven minutes of terror” touchdown this afternoon (Feb. 18), alighting gently on an ancient lakebed inside the 28-mile-wide (45 kilometers) Jezero Crater shortly before 4 p.m. EST (2100 GMT).

After a series of instrument and hardware checkouts, Perseverance will start doing what it crossed interplanetary space to do: hunt for signs of ancient Mars life, collect and cache rock samples for future return to Earth and demonstrate some shiny new exploration technologies, among other things.

“I don’t think we’ve had a mission that is going to contribute so much to both science and technology,” NASA Acting Administrator Steve Jurczyk told Space.com earlier this week . “It’s going to be truly amazing.”

Perseverance, the heart of NASA’s $2.7 billion Mars 2020 mission, lifted off from Florida’s Space Coast atop a United Launch Alliance Atlas V rocket on July 30, 2020.

That was about halfway through Perseverance’s month-long launch window, which closed in mid-August. Such windows come along just once every 26 months for Mars missions, so NASA was determined to get the rover off the ground on time — a challenging task made even tougher by the coronavirus pandemic, which forced a rethink of assembly and testing protocols and made it harder for the team to travel.

“In March and early April, we weren’t sure we were going to be able to make it,” Jurczyk said. (Back then, the NASA chief was Jim Bridenstine, and Jurczyk led the agency’s Space Technology Mission Directorate.) 

The rover’s name is a testament to the spirit that got the mission off the ground and on its way to Mars, agency officials have said.

“Perseverance is a strong word,” Thomas Zurbuchen, associate administrator of NASA’s Science Mission Directorate, said in March 2020 during the rover’s naming ceremony. “It’s about making progress despite obstacles.”

Like NASA’s other Mars rovers, Perseverance got its name via a nationwide student competition. The winning moniker was submitted by Alex Mather, at the time a seventh grader at Lake Braddock Secondary School in Burke, Virginia.

The six-wheeled Perseverance is modeled heavily after its predecessor, NASA’s Curiosity rover, which touched down inside Mars’ huge Gale Crater in August 2012 and is still going strong today.

Perseverance is a few inches longer than Curiosity and, with a weight of 2,260 lbs. (1,025 kilograms), nearly 300 lbs. (136 kg) heavier. Some of their scientific instruments are also quite different. But the two rovers share the same basic body plan and the same type of nuclear power source, and they used the same strategy to land safely on the Red Planet.

That strategy, which Curiosity pioneered, sounds like something out of science fiction. Perseverance hit the Martian atmosphere at about 12,100 mph (19,500 kph) and deployed a 70.5-foot-wide (20.5 meters) parachute a few minutes later, while still traveling faster than the speed of sound. 

But Mars’ air is just 1% as thick as that of Earth, so a chute couldn’t slow the rover down enough for a safe landing. Mars 2020 therefore employed a rocket-powered sky crane, which lowered the Mars car to the red dirt on cables, then flew off to crash-land intentionally a safe distance away.

NASA received word that Perseverance had gotten down safely at 3:55 p.m. EST (2055 GMT) today, about 11 minutes after the landing actually took place. (It currently takes that long for signals to travel from the Red Planet to Earth.) The news prompted wild celebrations at the Jet Propulsion Laboratory (JPL) in Southern California, which manages the Mars 2020 mission.

There was doubtless a decent dose of relief mixed in with the excitement, for success today was far from guaranteed. Over the decades, only about half of Mars surface missions have touched down safely. And Perseverance’s landing site on Jezero’s floor, which features hazards such as cliffs, sand dunes and boulder fields, was the toughest ever targeted by a Mars mission, NASA officials have said.

Indeed, this dangerous terrain required Perseverance to make the most precise Red Planet touchdown ever. The rover’s landing ellipse was just 4.8 miles long by 4.1 miles wide (7.7 by 6.6 kilometers), compared to 4 miles by 12 miles (7 by 12 km) for Curiosity.

Perseverance hit that target today with the aid of two new entry, descent and landing (EDL) technologies that Curiosity didn’t have at its disposal. One, called “range trigger,” allowed the mission to deploy its supersonic parachute at just the right moment. The other, “terrain-relative navigation,” enabled Perseverance’s sky crane to assess the Jezero landscape and navigate autonomously around potential hazards during the descent.

These landing technologies worked exactly as planned, guiding Perseverance to a picture-perfect touchdown on a safe, flat part of Jezero’s floor, mission team members said during a post-landing news conference this afternoon.   

And the rover seems to have made it through EDL in fine shape. Perseverance has already beamed home its first images of its new surroundings, and initial health checks revealed no causes for concern.

“The power system looks good,” Mars 2020 deputy project manager Jennifer Trosper, also of JPL, said during today’s briefing. “The batteries are charged at 95%, and everything looks great.” 

Curiosity is a habitability-assessing mission, and that rover has found plenty of evidence that Gale Crater could have supported Earth-like life billions of years ago. Perseverance will take the next step, actively searching for signs of past organisms in the first life hunt conducted on the Martian surface since NASA’s twin Viking landers ceased operations in the early 1980s. (The Vikings looked for present-day Mars life, however, whereas Perseverance is focused on the distant past.)

Jezero is a great place to do such work, mission team members have said. The crater, which lies about 18 degrees north of the Martian equator, hosted a lake the size of Lake Tahoe long ago and also sports an ancient river delta. In addition, Mars orbiters have spied on Jezero’s floor clay minerals, which form in the presence of liquid water.

Perseverance will scrutinize Martian dirt and rock with a variety of high-tech science gear, including multiple spectrometers, high-resolution cameras and ground-penetrating radar. One of the rover’s seven instruments, called SuperCam, will zap rocks with a laser and gauge the composition of the resulting vapor.

Such observations could potentially identify a convincing sign of ancient Mars life — perhaps something akin to stromatolites, structures created here on Earth by dirt-trapping microbial mats. But that’s a tall order for a lonely robot far from home. A positive ID of Martian life, if it ever existed, will likely require analyses by advanced equipment in laboratories here on Earth, NASA officials have said. And Mars 2020 aims to help make that happen.

Using the drill at the end of its long robotic arm, Perseverance will collect about 40 samples from especially promising sites and seal them inside special tubes. This material will then be brought back to Earth by a joint NASA-European Space Agency campaign, perhaps as early as 2031

Once here, the samples will be studied in countless ways by hundreds of scientists for decades to come. Researchers are still poring over the moon rocks hauled home by NASA’s Apollo astronauts half a century ago, after all, and that material has no serious astrobiological potential.

“Mars sample return is the planetary science endeavor of our generation,” Bobby Braun, director of solar system exploration at JPL, said during a pre-landing news conference yesterday (Feb. 17). 

“It’s ambitious. It’s challenging. It’s a scientifically compelling goal that, over decades, we have been working toward,” Braun said. “And it’s right there. It’s just within our reach.”

Mars 2020 will also pave the way for more ambitious exploration of the Red Planet in the future, if all goes according to plan.

For example, one of Perseverance’s instruments, called MOXIE (“Mars Oxygen ISRU Experiment”), is designed to generate oxygen from the Red Planet’s atmosphere, which is 95% carbon dioxide by volume. Such equipment, if scaled up, could help humanity get a foothold on Mars down the road, NASA officials have said. (“ISRU,” by the way, is short for “in situ resource utilization,” a fancy term for living off the land.)

And attached to Perseverance’s belly is a 4-lb. (1.8 kg) helicopter named Ingenuity, which will attempt to become the first rotorcraft ever to fly in the skies of a world beyond Earth. If Ingenuity succeeds, helicopters could soon become an important part of the Mars-exploration toolkit.

“We could put sensors on them and use them as science platforms, and also as scouts,” Jurczyk said. Aerial reconnaissance by rotorcraft could allow rovers to “drive more autonomously, and drive faster and longer on the surface,” he added.

Source: Space

The Martian Diet – What Will Humans Eat On Mars? Planetary Scientist Kevin Cannon Talks About The Logistics Of Feeding A Population Of One Million On The Red Planet

What inspired you to consider feeding one million people on Mars?

I’ve been working on a lot of projects related to space resources, so using local materials on the moon or Mars to support exploration and development of space. If you think about the consumables you would need for humans, you’re looking at oxygen, water, construction material and food. And what we realized is that the food is one of the most challenging things to produce on the surface of Mars and that it’s going to take a lot of processing. In our opinion, people really weren’t thinking big enough.

How did you come up with numbers—like number of people and caloric intake—for the study?

The million people, that’s kind of an arbitrary figure based on some stuff that Elon Musk has talked about for his aspirational goals, so we just chose that as a baseline. For the specific numbers in the study, we took a lot from data on Earth. For example, we looked at how many calories the average person eats per day and then scaled that based on a person’s age and activity level. In this computer model, we actually represent a population of people, so we had a 50/50 mix of males and females and we had an age structure. Of course, children consume a lot less calories than older people. That’s all taken into account in our modeling.

How did you determine which food sources would be well-suited for life on Mars?

We looked at this in a very general way. We thought, okay, let’s start from plants, because that’s what most people assumed in the past when they thought about what people would be eating on space missions. And let’s go a little bit beyond that to some protein sources. So, we looked at what’s being done on Earth and we honed in on insect-based foods that turned out to be very efficient for Mars, as well as what’s called cellular agriculture. That’s this idea of growing meat from cells in these large bioreactors. It’s something that’s actually coming a lot sooner than people think on Earth, and it’s very well-adapted for producing food in space.

How does cellular agriculture work?

The way it works is that you take cells from an animal—you can really use any animal, but people are starting with chickens, cows, the familiar things. You extract those cells and then you basically grow them in a nutrient solution. This could be done in a big, stainless steel tank and it almost would look more like brewing beer than a traditional farm. What people are really working on now is to try to get the texture right by building up those cells in some kind of scaffold that gives you the texture of different meats. But the whole point is it’s a much more sustainable way of producing animal protein, and it’s much more ethical because it doesn’t involve raising animals in questionable conditions.

Could you elaborate a bit more on the insect protein?

In North America and in Europe, it’s not really part of our culture or diet. But if you look more broadly, I think something like 2 billion people eat insects as part of their diet on a regular basis. It turns out to be a very good source of protein and again, it’s much more sustainable. It doesn’t require a lot of land or a lot of water compared to factory farming practices. Of course, there is a little bit of a gross factor. But people can, for example, grind up crickets into flour and then put them into cookies or chips or things like that, so you can hide them and get away from just chomping down on whole insects.

What kind of fruits or vegetables would be on the menu?

If you look at what’s being done in space right now, the astronauts have a little garden where they’re able to grow things like lettuce, tomatoes and peppers. Of course, those foods are valuable for things like vitamins and the psychological benefit of being able to grow your own vegetables. But you’re not going to be able to feed a large population on those very low-calorie vegetables, so you’re really going to have to look at things like corn, wheat and soy that are dense enough in calories to support a growing population.

What kinds of technologies did you find were best suited for food production on Mars?

One of the important things is that you would want your food production to be as automated as possible because that would free up people’s time to do more important things. A lot of companies are working on that on Earth, trying to integrate robots into farming and insect production. I think the other thing that’s going to be important is genetic modification, particularly with the plant species, to find ways to improve strains of crops and make them more resilient to grow in a harsh environment on Mars. Right now, the most promising thing would be something like CRISPR, which has kind of taken over the biology world. Already, there’s been a few studies that have used CRISPR to rapidly modify the genomes of specific plant species. So, I think that in particular has the most promise for making Mars-specific strains of crops.

What are some other challenges posed by the conditions on Mars?

One thing we looked at was whether it makes sense to grow plants in greenhouses on the surface. Whenever you see an artist sketch of a Mars base, you always see greenhouses everywhere. But what we found is that you really just don’t get enough sunlight at the surface of Mars because it’s farther away from the sun. Your incident sunlight is basically what you would get in Alaska, and there’s a reason why we don’t grow corn and wheat in Alaska. They’re growing at more southern latitudes. So, it turns out that something like a greenhouse might actually not make sense on Mars. You might be better off growing the plants and producing other foods in tunnels underground, for example.

Where would the water come from?

We have a pretty good handle on where the water is on Mars. It’s mostly locked up as ice underground and it’s also found in certain minerals. For things like clays and salts, where the water is actually embedded in the mineral structure, you could heat those up and evaporate the water off. Once you extract that water, it’s pretty easy to recycle water fairly efficiently. I think on the space station, something like 97 percent of the water is recaptured and reused. It’s obviously an engineering challenge to mine that water in the first place, but then once you have a reservoir built up, you should be able to recycle it fairly efficiently in this closed ecosystem that you construct.

Based on the results of the study, would you advocate for a human settlement on Mars?

Yes, and I think if we look at what particularly SpaceX is doing, they’re already building the ships that are going to take cargo and then people to Mars. We’re already kind of set down that path, and the question is going to be: who goes? Is this going to be space agencies? Is it going to be tourists? And how is a settlement or a city going to build up? But I think it is definitely something that’s feasible in the near term.

Source: Smithsonian

Reddit Acquires TikTok/Triller Rival Dubsmash

Reddit has acquired Dubsmash, the lipsyncing video app which launched in 2014 and was largely supplanted when TikTok showed up. 

Announced via Reddit’s blog on Sunday, the annexing of Dubsmash’s 12-person team to Reddit’s 700-strong horde is the popular website’s first major acquisition in its 15-year history.

While the financial terms of the agreement haven’t been disclosed, Dubsmash will be keeping its own platform and separate branding. Dubsmash’s Android and Apple apps will continue to operate as normal, with its video creation tools simply integrated into Reddit’s infrastructure. 

Reddit currently allows users to upload and livestream videos, however its editing capabilities are somewhat lacklustre — a problem this acquisition hopes to address.

“The transition to video will be bigger than the transition to mobile,” Reddit co-founder and CEO Steve Huffman said, speaking via the Wall Street JournalWhich sounds fake, but okay. Pivots to video historically haven’t worked out well, but perhaps the distinction between editorial and user-created content will yield better results.

Dubsmash went through a slow decline in the wake of its 2015 popularity boom, before revamping itself in 2017 to stage an unlikely comeback. While still not as successful as TikTok, the short-form video app established a significant audience by focusing on the one demographic still using it — Black teenagers in the U.S

As such, both Reddit and Dubsmash’s acquisition announcements heavily emphasised the diverse, underrepresented creators who use the app. According to Reddit, a quarter of Black teens in the U.S. use Dubsmash, while 70 percent of users are women or girls.

“By joining forces with Reddit, we expand our ability to serve the creators that represent the lifeblood of Dubsmash, helping them connect, share, and deepen their impact on culture,” wrote Dubsmash co-founders Suchit Dash, Jonas Drüppel and Tim Specht. The trio further reaffirmed their goal to “[create] a safe and welcoming platform for underrepresented communities.”

“Both Reddit and Dubsmash share a deep rooted respect for how communities come together,” said Huffman. “Dubsmash elevates under-represented creators, while Reddit fosters a sense of community and belonging across thousands of different topics and passions.”

Source: Mashable

Facebook Accused Of Watching Instagram Users Through Their Phone Cameras

Facebook Inc. is again being sued for allegedly spying on Instagram users, this time through the unauthorized use of their mobile phone cameras.

The lawsuit springs from media reports in July that the photo-sharing app appeared to be accessing iPhone cameras even when they weren’t actively being used.

Facebook denied the reports and blamed a bug, which it said it was correcting, for triggering what it described as false notifications that Instagram was accessing iPhone cameras.

In the complaint filed Thursday in federal court in San Francisco, New Jersey Instagram user Brittany Conditi contends the app’s use of the camera is intentional and done for the purpose of collecting “lucrative and valuable data on its users that it would not otherwise have access to.”

By “obtaining extremely private and intimate personal data on their users, including in the privacy of their own homes,” Instagram and Facebook are able to collect “valuable insights and market research,” according to the complaint.

Facebook declined to comment.

Source: Bloomberg

Microsoft Is Selling Ugly Windows MS Paint-Themed Holiday Christmas Sweaters, With Proceeds Benefiting Girls Who Code

Microsoft has unveiled a clothing line of Windows “ugly” sweaters ahead of the Christmas holiday season. 

The fashion line features three designs inspired by the nostalgic MS Paint, Windows 95, and Windows XP, with each piece of outerwear being priced at US$69.99. 

“No matter your skill at painting (or MS Paint), you’re sure to be a work of art in this ‘Untitled – Paint’ masterpiece,” Microsoft wrote. 

A portion of the proceeds will head towards Girls Who Code, a nonprofit focused on closing the gender gap in the tech industry. 

Source: DesignTAXI

Scientists Reverse Age-Related Vision Loss, Eye Damage From Glaucoma In Mice

Harvard Medical School scientists have successfully restored vision in mice by turning back the clock on aged eye cells in the retina to recapture youthful gene function.

The team’s work, described Dec. 2 in Nature, represents the first demonstration that it may be possible to safely reprogram complex tissues, such as the nerve cells of the eye, to an earlier age.

In addition to resetting the cells’ aging clock, the researchers successfully reversed vision loss in animals with a condition mimicking human glaucoma, a leading cause of blindness around the world.

The achievement represents the first successful attempt to reverse glaucoma-induced vision loss, rather than merely stem its progression, the team said. If replicated through further studies, the approach could pave the way for therapies to promote tissue repair across various organs and reverse aging and age-related diseases in humans.

“Our study demonstrates that it’s possible to safely reverse the age of complex tissues such as the retina and restore its youthful biological function,” said senior author David Sinclair, professor of genetics in the Blavatnik Institute at Harvard Medical School, co-director of the Paul F. Glenn Center for Biology of Aging Research at HMS and an expert on aging.

Sinclair and colleagues caution that the findings remain to be replicated in further studies, including in different animal models, before any human experiments. Nonetheless, they add, the results offer a proof of concept and a pathway to designing treatments for a range of age-related human diseases.

“If affirmed through further studies, these findings could be transformative for the care of age-related vision diseases like glaucoma and to the fields of biology and medical therapeutics for disease at large,” Sinclair said.

Source: Medical Xpress

Japan Debuts ‘World’s First Foot-Operated’ Vending Machine For The COVID-19 Era

Before the virus crisis, people would click on the buttons in vending machines to make their purchases but nowadays physical contact is strongly discouraged. So, a Japanese company called DyDo has come up with a new invention. 

It has launched the “world’s first foot-operated” vending machine that is completely “hands-free.” 

The new innovation allows people to use the foot pedals installed in the vending machines to make their selections. They can also opt for contactless payments by tapping their smartphones to the machine’s display. 

Customers can also choose to preorder their items online and then scan their phones to collect their products. 

The machine also includes a food tray, which opens when a customer steps on a lever. It is equipped with UV light sterilization to ensure the products are decontaminated the moment customers retrieve them. 

Source: DesignTAXI

Software Engineer Rashiq Zahid Creates Website That Knows If Your Local McDonald’s Ice Cream Machine Is Broken

There’s a tired joke about McDonald’s chronically broken ice cream machines. You’ve heard it, I’ve heard it, and 24-year-old software engineer Rashiq Zahid has heard it.

Fortunately, one of us—the engineer, of course—found a way to protect McDonald’s fans from the age-old disappointment of heading all the way to a store only to be told the ice cream machine isn’t working. Zahid calls his new masterpiece mcbroken, and it actually appears to work.

In simple terms, because, let’s be real, most of us don’t know what the hell reverse engineering an internal API means, mcbroken acts as a bot that tests the availability of ice cream sundaes at every US location every 30 minutes. It does so by trying to add a sundae to the cart on McDonald’s mobile app.

If the app fails to add a sundae to the cart because ice cream is unavailable at that location, that spot is marked with a red dot on the map. If the app succeeds at adding a sundae to the cart, it means ice cream is available at that location, earning the spot a green dot on the map.

Source: Thrillist

Memories Can Be Injected and Survive Amputation and Metamorphosis

The study of memory has always been one of the stranger outposts of science. In the 1950s, an unknown psychology professor at the University of Michigan named James McConnell made headlines—and eventually became something of a celebrity—with a series of experiments on freshwater flatworms called planaria. These worms fascinated McConnell not only because they had, as he wrote, a “true synaptic type of nervous system” but also because they had “enormous powers of regeneration…under the best conditions one may cut [the worm] into as many as 50 pieces” with each section regenerating “into an intact, fully-functioning organism.” 

In an early experiment, McConnell trained the worms à la Pavlov by pairing an electric shock with flashing lights. Eventually, the worms recoiled to the light alone. Then something interesting happened when he cut the worms in half. The head of one half of the worm grew a tail and, understandably, retained the memory of its training. Surprisingly, however, the tail, which grew a head and a brain, also retained the memory of its training. If a headless worm can regrow a memory, then where is the memory stored, McConnell wondered. And, if a memory can regenerate, could he transfer it? 

Shockingly, McConnell reported that cannibalizing trained worms induced learning in untrained planaria. In other experiments, he trained planaria to run through mazes and even developed a technique for extracting RNA from trained worms in order to inject it into untrained worms in an effort to transmit memories from one animal to another. Eventually, after his retirement in 1988, McConnell faded from view, and his work was relegated to the sidebars of textbooks as a curious but cautionary tale. Many scientists simply assumed that invertebrates like planaria couldn’t be trained, making the dismissal of McConnell’s work easy. McConnell also published some of his studies in his own journal, The Worm Runner’s Digest, alongside sci-fi humor and cartoons. As a result, there wasn’t a lot of interest in attempting to replicate his findings.

David Glanzman, a neurobiologist at the University of California, Los Angeles, has another promising research program that recently struck a chord reminiscent of McConnell’s memory experiments—although, instead of planaria, Glanzman’s lab works mostly with aplysia, the darling mollusk of neuroscience on account of its relatively simple nervous system. (Also known as “sea hares,” aplysia are giant, inky sea slugs that swim with undulating, ruffled wings.)

Source: Nautilus